MATEMATIKA

BELAJAR MATEMATIKA TIDAK HANYA MEMBACA DAN MENGHAFALKAN RUMUS SAJA TETAPI HARUS TAHU DASARNYA ITUKAN CUMA TEORINYA, AKAN TETAPI HARUS DIPRAKTEKAN DENGAN NENGERJAKAN SOALNYA. SELAMAT MENCOBA PASTI BISA

Rabu, 25 September 2019

Penjumlahan dan Pekalian akar2 Penyelesaian Persamaan Kuadrat

Penjumlahan dan Pekalian akar2 Penyelesaian Persamaan Kuadrat

Amati Vidio Berikut dibawah ini



Keterangan

dari x1,2 = { -b ± √(b2 - 4ac) } / 2a dengan D = b2 - 4ac maka x1 = (-b + √D) / 2a dan x2 = (-b - √D) / 2a
* D adalah Deskriminan

1. x1 + x2 = {(-b + √D) / 2a} + {(-b - √D) / 2a}
                    = (-b + √D - b - √D) / 2a
                    = -2b / 2a
                    = -b /a
Jadi, x1 + x2 = -b/a

2. x1 - x2 = {(-b + √D) / 2a} - {(-b - √D) / 2a}
                  = (-b + √D + b + √D) / 2a
                  = 2√D / 2a
                  = √D /a
Jadi, x1 - x2 = √D/a

3. x1 . x2 = {(-b + √D) / 2a} {(-b - √D) / 2a}
                  = (b2 - D) / 4a2
                  = b2 - (b2 - 4ac) / 4a2
                  = (b2 - b2 + 4ac) / 4a2
                  = 4ac / 4a2
                  = c/a
Jadi, x1 . x2 = c/a

4. (x1 + x2)2 = x12 + 2(x1 . x2) + x22
     (x1 + x2)2 - 2(x1 . x2) = x12 + x22
Jadi, x12 + x22 = (x1 + x2)2 - 2(x1 . x2)

5. (x1 + x2)3 = x13+ 3x12. x2 + 3x1 . x22 + x23
       (x1 + x2)-  3x12. x2 + 3x1 . x22 = x13 + x23 
              (x1 + x2)-  3x1.x2(x1 + x2)  = x13 + x2 
Jadi, x13 + x2= (x1 + x2)-  3x1.x2(x1 + x2)

contoh soal!
1. Persamaan kuadrat -2x2 +4x-5=0 akar2nya α dan β
    Tentukan : a.  α + β                 d. α3 + β3
                        b. α . β                    e. 1/α + 1/β
                        c. α2 + β2                f. 1/(α+2) + 1/(β+2)
   
Jawaban :
   a. α + β     = -b/a = 2
   b. α . β      = c/a   = 5/2
   c. α2 + β2 = (α + β)2 - 2(α . β)
                    = 22 - 2.5/2
                    = 4 - 5
                    = -1
   d. α3 + β3 = (α + β)3 - 3α.β (α+β )
                    = 2 - 3.5/2.2
                    = 8 - 15
                    = -7
   e. 1/α + 1/β = (α + β) / αβ
                        = 2 / (5/2)
                        = 4/5
   f. 1/(α+2) + 1/(β+2) = {(α+2) + (β+2)} / {(α+2) (β+2)}
                                      = {(α+β) + 4} / {α.β + 2(α+β) + 4}
                                      = (2+4) / (5/2 + 2.2 + 4)
                                      = 6 / (21/2)
                                      = 12/21 
                                      = 4/7

Menyusun Persamaan Kuadrat Baru 

Ada 2 cara untuk menyusun persamaan kuadrat baru yang akar2nya x1 dan x2 yaitu,
1. (x - x1) (x - x2) = 0

Contoh soal
 : Susunlah Persamaan kuadrat baru yang akar2nya adalah

a. 2 dan 7 => PKB = (x - 2) (x -7)
                                  = x- 9x +14
b. -3 dan -4 => PKB = {x-(-3)} {x-(-4)}
                                    = (x+3) (x+4)
                                    = x2 + 7x + 12
c. -7 dan 2 => PKB = {x-(-7)} (x-2)
                                   = (x+7) (x-2)
                                   = x2 + 5x - 14
d. 5 dan -2 => PKB = (x-5) {x-(-2)}
                                   = (x-5) (x+2)
                                   = x2 - 3x - 10


2. x2 - (x1 + x2)x + x1.x2 = 0

Contoh soal : 
1. Susunlah Persamaan Kuadrat baru yang akar2nya adalah 2+√5 dan 2-√5!
    Jawaban :  x1 + x2 = (2+√5) +(2-√5) = 4 
                            x1.x2 = (2+√5) (2-√5)  = -1
    Jadi, PKB => x2 - (x1 + x2)x + x1.x2 = 0
                       =>                    x2 - 4x - 1 = 0
2. x1 dan x2 adalah akar2 persamaan kuadrat  x2 - 2x + 5 = 0. Susunlah persamaan kuadrat baru yang akar2nya 3 lebihnya dari akar2 persamaan kuadrat yang diletahui.

Jawaban  : x1 + x2 = -b/a = 2 dan x1.x= c/a = 5
                     x1 = (x1 + 3) dan x2 = (x2 + 3)
maka, x1 + x2 = (x1 + 3) + (x2 + 3)                  dan             x1.x= (x1 + 3) (x2 + 3)     
                         = (x1 + x2) + 6                                                       = x1.x2 + 3(x1+x2) + 9
                         = 2 + 6                                                                   = 5 + 3.2 + 9
                         = 8                                                                          = 20
Jadi, PKB maka; x2 - (x1 + x2)x + x1.x2 = 0
                                  x2 - 8x + 20 = 0
                    * Deskriminan (D) => D = b- 4ac *


untuk menentukan jenis akar2 persamaan kuadrat, rumusnya :

a. D = 0 maka; Mempunyai 2 akar yang sama
b. D < 0 makat; Tidak mempunyai akar nyata (akar2nya imajiner)
c. D ≥ 0 maka; Mempunyai 2 akar nyata
d .D > 0 maka; Mempunyai 2 akar nyata dan berlawanan

Contoh Soal :
1. Tentukan nilai k agar persamaan kuadrat kx+ 3x + k = 0 mempunyai 2 akar sama/kembar
    Jawaban : Syarat akar kembar D = 0, maka

                        b- 4ac = 3- 4.k.k
                                  0 = 9 - 4k2
                              4k2 = 9
                                 k2  = (9/4)
                                  k = ±√(9/4)
                                  k = ± 3/2

2. Tentukan m agar persamaan kuadrat berikut x2 - 2x + (m+1) = 0 Tidak mempunyai akar nyata.
     Jawaban : Syarat tidak mempunyai akar nyata D < 0, maka
                              
                       b2 - 4ac < 0
                       22 - 4.1.(m+1) < 0
                               4 - 4m - 4 < 0
                                    0 - 4m < 0
                                       - 4m < 0
                                            m < 0
3. Tentukan P agar persamaan kuadrat x2 + px + p = 0 mempunyai 2 akar real dan berbeda.
     Jawaban : Syarat akar real dan berbeda D > 0, maka
                               
     b2 - 4ac > 0
     p2 - 4.1.p > 0
     p2 - 4p > 0
     p(p - 4) > 0 
    
Jadi, p > 0 dan p > 4 

Senin, 23 September 2019

MENENTUKAN FUNGSI KUADRAT

MENENTUKAN FUNGSI KUADRAT

Amati Vidio berikut dibawah ini



Keterangan

Menentukan Fungsi Kwadrat ada tiga cara sesuai soal yang diketahuinya :

CARA 1
1.  Dengan cara substitusi dan eliminasi dengan menggunakan rumus bentuk umum  fungsi kwadrat yaitu   
     y = ax2 + bx + c

Jika soal diketahui melalui 3 titik koordinat diantaranya (x1,y1), (x2,y2), (x3,y3), dari ketiga titik tersebut subtitusan ke Persamaan tersebut diatas

(x1,y1)     maka         y1 = ax1 + bx1 + c …….…Pers.1

(x2,y2)       maka       y2 =  ax2 + bx2 + c ………Pers.2

(x3,y3)        maka      y3 = ax3 + bx3 + c …….…Pers.3

Selanjutnya, menentukan nilai a, b, c dengan menggunakan penyelesaian system persamaan linier dengan 3 variabel / peubah. Dengan cara Eleminasi, subtitusi, atau campuran ( eleminasi dan subtitusi ). Jika nilai a, b, c sudah diketahui subtitusikan ke Persamaan  y = ax2 + bx + c

Contoh
Tentukan fungsi kuadrat yang grafiknya melalui titik A(1,0) , B(-1,-6) dan C (2,6) !

Jawab:
Bentuk umum fungsi kuadrat: y = ax2 + bx + c
Nilai a,b dan c dapat dicari sebagai berikut:

y = ax2 + bx + c 

A(1,0)    maka    y =  a(1)2 + b(1) + c  
                               0 = a + b + c ............................(1)

B(-1,-6)   maka   y = a(-1)2 + b(-1) + c 
                              -6 = a - b + c ............................(2)

C(2,6)    maka    y = a(2)2 + b(2) + c
                               6 = 4a + 2b + c ...................... (3)

Eliminasi dari persamaan (1) dan (2):
          a+b+c     =  0
          a -b+c     = -6 –        
             2b        = 6
               b     = 3 …………….. (4)

Eliminasi dari persamaan (3) dan (1):
4a+2b+c = 6
a + b + c = 0  –
3a + b     = 6 ………………(5)

Nilai b dari Persamaan (4) Subtitusi ke persamaan (5)
3a + b = 6
3a + 3 = 6
3a       = 6 – 3
3a  = 3
  a= 1 

Nilai a = 1, dan b = 3 disubstitusikan ke persamaan (1)
a + b + c = 0
1 + 3 + c = 0
4 + c = 0
c = 4
Jadi nilai a = 1, b = 3, dan nilai c = -4 disubstitusikan fungsi kuadrat yang dimaksud adalah
y = ax + bx + c             
y = x + 3x – 4



CARA 2 : MENGGUNAKAN RUMUS Sbb.

 y = a(x – p)(x – q)

Jika soal fungsi kwadrat diketahui grafiknya memotong sumbu x di titik (p,0), (q,0) dan melalui satu titik  (x,y)

Dari ketiga titik tersebut disubstitusikan ke Pessamaan y = a(x – p)(x – q), maka nilai a akan diketahui. Selanjutnya nilai a, p, q disubstitusikan ke Persamaan y = a(x – p)(x – q) dan peubah / variable x dan y tidak perlu diganti supaya membentuk fungsi kwadrat. 

Contoh

Tentukan fungsi kuadrat yang grafiknya memotong sumbu x di titik (-1,0) dan (5,0).serta melalui (4,-5)

Diketahui : p = -1; q = 5; x = 4; y = -5
Ditanya   : Fungsi Kwadrat ?

Jawab : 

Langkah I : mencari nilai a dengan cara substitusikan semua yang diketahui tersebut diatas pada rumus
    y = a(x – p) (x – q)
    -5 = a(4 – (-1))(4 – 5)
    -5 = a(4 + 1) (–1) 
    -5 = a(5)(-1)
    -5 = -5a
     1 = a
   
Langkah 2  : substitusikan nilai a, p, dan q sedangkan x dan y tidak perlu diganti  pada rumus
    y = a(x – p) (x – q)
    y = 1(x - (-1)) (x – 5)
    y = 1(x + 1) (x – 5)
    y = x(x – 5) + 1(x – 5)
    y =   x2 – 5x + 1x – 5
    y =   x2 – 4x  – 5
   Jadi, fungsi kuadratnya : y = x– 4x – 5
                                            

CARA 3 : Menggunakan Rumus Sbb.

y = a(x – p)2 + q

Jika soal fungsi kwadrat tsb. diketahui  Melalui titik puncak / ekstrim (p,q), dan melalui satu titik  (x,y) .

Dari kedua titik tersebut disubstitusikan ke Pessamaan y = a(x – p)2 + q, maka nilai a akan diketahui. Selanjutnya nilai a, p, q disubstitusikan ke Persamaan y = a(x – p)2 + q, dan peubah / variable x dan y tidak perlu diganti supaya membentuk fungsi kwadrat.

Contoh 
Tentukan fungsi kuadrat yang grafiknya mempunyai titik puncak (2,-9) serta melalui titik (-1,0)

Diketahui : p = 2; q = -9; x = -1; y = 0
Ditanya   : Fungsi Kwadrat ?
Jawaban :

Langkah I : mencari nilai a dengan cara substitusikan semua yang diketahui tersebut diatas pada rumus 
    y = a(x – p)+ q
    0  = a(-1 – 2)– 9
    0  = a(-3)– 9
    0  = 9a  – 9
    0  = 9a  – 9
    9  = 9a 
    1  = a
  
Langkah 2  : substitusikan nilai a, p, dan q sedangkan x dan y tidak perlu diganti  pada rumus

=> y = a(x – p)2 + q
=> y = 1(x – 2)– 9
=> y = (x – 2)(x – 2) – 9
=> y = (x– 4x + 4) – 9
=> y = x– 4x  – 5

GRAFIK FUNGSI KUADRAT

MENGGAMBAR GRAFIK FUNGSI KUADRAT

Amati Vidio Berikut dibawah ini


Keterangan

Grafik Fungsi Kwadrat
Fungsi dilambangkan / ditulis / disimbulkan dengan f(x), g(x), h(x), atau y
Bentuk Umum Kwadrat adalah  ax2 + bx + c
Penulisan fungsi kwadrat adalah  f(x) =  ax2 + bx + c  atau
                                                           y =  ax2 + bx + c  

Menggambar Grafik Fungsi Kwadrat ada beberapa langkah

Langkah 1 : Mencari Sumbu Simetri / xsm =  –b : 2a 
Langkah 2 :  Jika sudah ketemu sumbu simetri maka ambil dua angka – dua angka ke kiri dan kekanannya sumbu simetri  tsb
x


xsm


ax2





bx





c





y


yop


(x,y)


(xsm, yop)



Langkah 3 : Dari 5 titik koodinat yang ada pada tabil di gambar pada diagram kartesius
Catatan : Nilai Optimum atau f(x) atau yop = (b2 – 4ac) ; – 4a

Contoh :
y = -2x2 + 4x + 5, gambar grafik dari fungsi kwatrat tersebut
Jawab :
Langkah 1 : a = -2, b = 4, c = 5, maka sumbu simetri / xsm =  –(4) : 2(-2)
                                                                                        xsm =  –4 : (-4) 
                                                                                        xsm =  1

x
-1
0
1
2
3
-2x2
-2
0
-2
-8
-18
4x
-4
0
4
8
12
5
5
5
5
5
5
y
-1
5
7
5
-1
(x,y)
(-1,-1)
(0,5)
(1, 7)
(2,5)
(3,-1)

Jadi Grafik dari y = -2x2 + 4x + 5 adalah